This question does not have any answers yet. In the meantime we have included some related questions and answers below.
Profile photo for Rik Bos

It is tempting to write the equation as

[math]m(m^5-1)=n^2(n-5)[/math]

from which we derive a simple solution: [math](m,n)=(1,5)[/math]

From now on suppose [math]m\ge 2[/math]. By comparing magnitudes, we could guess that [math]n[/math] is approximately [math]m^2[/math]. So let’s write [math]n=m^2+d[/math]. Then [math]n^3-5n^2=m^6+(3d-5)m^4+(3d-10)dm^2+d^2(d-5)[/math], so

[math](3d-5)m^4+(3d-10)dm^2+d^2(d-5)=-m[/math]

It is immediate that there are no solutions if [math]d\ge 5[/math] and one can also verify easily the same holds if [math]d=4[/math] or [math]d=3[/math]. But if [math]d=2[/math] we have [math]m^4-8m^2-12=-m[/math]. Clearly, [math]m[/math] cannot be too large; in fact [math]m=4[/math] is already too large. But [math]m=3[/math] is a solution and since [math]m\ge 2[/math] the only one (in case [math]d=2[/math]). So w

It is tempting to write the equation as

[math]m(m^5-1)=n^2(n-5)[/math]

from which we derive a simple solution: [math](m,n)=(1,5)[/math]

From now on suppose [math]m\ge 2[/math]. By comparing magnitudes, we could guess that [math]n[/math] is approximately [math]m^2[/math]. So let’s write [math]n=m^2+d[/math]. Then [math]n^3-5n^2=m^6+(3d-5)m^4+(3d-10)dm^2+d^2(d-5)[/math], so

[math](3d-5)m^4+(3d-10)dm^2+d^2(d-5)=-m[/math]

It is immediate that there are no solutions if [math]d\ge 5[/math] and one can also verify easily the same holds if [math]d=4[/math] or [math]d=3[/math]. But if [math]d=2[/math] we have [math]m^4-8m^2-12=-m[/math]. Clearly, [math]m[/math] cannot be too large; in fact [math]m=4[/math] is already too large. But [math]m=3[/math] is a solution and since [math]m\ge 2[/math] the only one (in case [math]d=2[/math]). So we have another solution to the original equation:

[math](m,n)=(3,11)[/math]

The case [math]d=1[/math] is easily ruled out, for then [math]-2m^4-7m^2+m=4[/math] which forces [math]m[/math] to be a divisor of [math]4[/math], so [math]2[/math] or [math]4[/math], but those don’t work.

Finally, if [math]d\le 0[/math], then [math]n\le m^2[/math], so [math]n^2(n-5)\le m^4(m^2-5)=m^6-5m^2<m^6-m[/math]. So no solutions in this case and we have shown the only solutions to the original equation are [math](m,n)=(1,5),(3,11)[/math].

Weight Loss Made Easy. Money Back Guarantee.
Profile photo for Doug Dillon

Since you ask for HOW, here is a grade 9 version of HOW:

  1. Begin by acknowledging the solution x=y=0.
  2. Eliminate half the work by supposing that [math]x\le y[/math].
  3. Let [math]GCD(x,y)=d,[/math] and then [math]x=dX[/math] and [math]y=dY[/math].
  4. Substitute into some of the equation and write something like: [math]d^2XY\times \text {thing }=4d^2(X+Y)^2[/math] where [math]\text {thing}=d^4(XY)^2–12d^2(XY)-12dX-12dY+2)[/math]
  5. After cancelling the d’s and knowing that X and Y are relatively prime, realize that [math]XY=4[/math]
  6. Since [math]X<Y[/math], X=1 or -4 and Y=4 or -1 respectively.
  7. Now, the equation reads [math]16d^4–48d^2-12dX-12dY+2=25d^2[/math].
  8. What divides the left side and hence the right.
  9. Draw a conclusion.
Profile photo for Takei Yoshinori

For a while let us forget the restriction [math] x \leq y \leq z. [/math]

Fix any prime number [math] p. [/math] For an integer [math] x, [/math] the additive valuation [math] v_p(x) [/math] at [math] p [/math] is the largest integer [math] c [/math] such that [math] p^{-c} x \in \mathbb{Z} [/math]. It satisfies

[math] v_p(a \pm b) \geq \min(v_p(a), v_p(b)) \tag{*} [/math]
where
[math](*) ~\text{holds with equality if }~ v_p(a) \neq v_p(b). \tag{**}[/math]

For [math] x, y, z \in \mathbb{Z}^+ [/math] satisfying the relation
[math] \mathrm{lcm}(x,y,z) = \gcd(x,y) + \gcd(y,z) + \gcd(z,x) \tag{0} [/math]
and a prime
[math] p [/math] that divides at least one of [math] x, y, z, [/math] let us find cases that are impossible.

Suppose that [math] v_p(\gcd(x,y)) < \min(v_p(\gc[/math]

For a while let us forget the restriction [math] x \leq y \leq z. [/math]

Fix any prime number [math] p. [/math] For an integer [math] x, [/math] the additive valuation [math] v_p(x) [/math] at [math] p [/math] is the largest integer [math] c [/math] such that [math] p^{-c} x \in \mathbb{Z} [/math]. It satisfies

[math] v_p(a \pm b) \geq \min(v_p(a), v_p(b)) \tag{*} [/math]
where
[math](*) ~\text{holds with equality if }~ v_p(a) \neq v_p(b). \tag{**}[/math]

For [math] x, y, z \in \mathbb{Z}^+ [/math] satisfying the relation
[math] \mathrm{lcm}(x,y,z) = \gcd(x,y) + \gcd(y,z) + \gcd(z,x) \tag{0} [/math]
and a prime
[math] p [/math] that divides at least one of [math] x, y, z, [/math] let us find cases that are impossible.

Suppose that [math] v_p(\gcd(x,y)) < \min(v_p(\gcd(y,z)), v_p(\gcd(z,x))). \tag{1} [/math]
Rewrite (0) as
[math]\mathrm{lcm}(x,y,z) - \gcd(x,y) = \gcd(y,z) + \gcd(z,x) \tag{2}[/math]

and evaluate the valuations at [math] p [/math] of both sides.
For LHS, by (*), (**) and the relation
[math]v_p(\mathrm{lcm}(x,y,z)) \geq v_p(\gcd(y,z)) > v_p(\gcd(x,y)),[/math] it holds that
[math]v_p(\mathrm{lcm}(x,y,z) - \gcd(x,y)) = \min(v_p(\mathrm{lcm}(x,y,z)), v_p(\gcd(x,y)))[/math]

[math]\quad = v_p(\gcd(x,y))[/math]

on the other hand, for RHS, by (*), it holds that
[math]v_p(\gcd(y,z) + \gcd(z,x)) \geq \min(v_p(\gcd(y,z)),v_p(\gcd(z,x)) ), [/math]

thus, the assumption (1) contradicts the equality (0).

Therefore, among three nonnegative integers [math]v_p(\gcd(x,y)), v_p(\gcd(y,z)), v_p(\gcd(z,x)),[/math]

at least two of them are the smallest (i.e. the smallest can’t be alone).

Let us consider the case [math]v_p(\gcd(x,y)) = v_p(\gcd(y,z)) = v_p(\gcd(z,x)) [/math]first. This implies that [math] \min(v_p(x), v_p(y)) = \min(v_p(y), v_p(z)) = \min(v_p(z), v_p(x)), [/math]
which in turn implies that at least two of
[math] v_p(x), v_p(y), v_p(z) [/math] are the smallest among these three.
By the condition
[math] \gcd(x,y,z) = 1, [/math] the smallest value must be [math] 0. [/math] Also, since we have assumed that [math] p [/math] divides at least one of [math] x, y, z, [/math] The largest value should be positive.

The remaining case for [math]v_p(\gcd(x,y)), v_p(\gcd(y,z)), v_p(\gcd(z,x))[/math]is ``two equally small plus one big’’. WLOG, assume that
[math] v_p(\gcd(x,y)) = v_p(\gcd(y,z)) < v_p(\gcd(x,z)) \tag{3}. [/math] This implies that
[math]\min(v_p(x), v_p(y)) = \min(v_p(y), v_p(z)) < \min(v_p(z), v_p(x)) [/math] and thus [math] v_p(y) < \min(v_p(x), v_p(z)).[/math] By the condition [math] \gcd(x,y,z) = 1,[/math] we have [math] v_p(y) = 0. [/math]
Writing
[math] x = p^a x’, z =p^b z’ [/math] with positive integers [math] a, b [/math] and [math] x’, z’ (v_p(x’) = v_p(z’) = 0),[/math] we have

[math] \mathrm{lcm}(x, y, z) = p^{\max(a,b)} \mathrm{lcm}(x’,y,z’) [/math]

[math]\geq p^{\max(a,b)} \mathrm{lcm}(x’,z’) \geq p^{\max(a,b)} \max(z’,x’)[/math]
and
[math] \gcd(x,y) + \gcd(y,z) + \gcd(z,x) [/math]

[math]\quad = \gcd(x’,y) + \gcd(y,z’) + p^{\min(a,b)} \gcd(z’,x’)[/math]

[math]\quad \leq x’ + z’ + p^{\min(a,b)} \gcd(z’,x’) [/math]

[math] \quad \leq 2 \max(z’,x’) + p^{\min(a,b)} \max(z’,x’). [/math]
Therefore, by (0), we have
[math] p^{\max(a,b)} \max(z’,x’) \leq 2 \max(z’,x’) + p^{\min(a,b)} \max(z’,x’) [/math]
which is simplified to
[math] p^{\max(a,b)} - p^{\min(a,b)} \leq 2. \tag{4}[/math]
Suppose further that
[math] p > 2. [/math] Since [math] a [/math] and [math] b [/math] are positive,
[math] \max(a,b) = \min(a,b), [/math] or equivalently, [math] a = b [/math] should hold. In this case,
we have seen that
[math] 0 = v_p(y) < a = v_p(x) = b = v_p(z). [/math]
When
[math] p = 2, [/math] by dividing (4) by 2,
[math]2^{\max(a,b)-1} - 2^{\min(a,b)-1} \leq 1[/math]
holds. It is attained only when
[math] a = b [/math] or [math]\max(a,b)=2 \wedge \min(a,b)=1.[/math]

Performing the above observations for each permutations of [math](x,y,z)[/math], we obtain the following lemma.

Lemma 1. Suppose that [math] x, y, z \in \mathbb{Z}^+ [/math] with [math] \gcd(x, y, z) = 1 [/math] satisfy the equation (0). For each prime [math] p > 2[/math] that divides at least one of [math] x, y, z, [/math] the set [math] \{ v_p(x), v_p(y), v_p(z) \}[/math] is [math] \{0, r\} [/math] where [math] r [/math] is a positive integer. For [math] p = 2,[/math] if at least one of [math] x, y, z [/math] is even, then [math] \{v_2(x), v_2(y), v_2(z) \} = \{0, 1, 2 \}[/math], or [math] = \{0, r\} [/math] where [math] r [/math] is a positive integer.

Let [math] S [/math] be the set of prime numbers [math] \geq 3 [/math] that divides at least one of [math] x, y, z. [/math] Lemma 1 asserts that [math] S [/math] is divided to the disjoint union
[math] S = S_{x} \sqcup S_{y} \sqcup S_{z} \sqcup S_{xy} \sqcup S_{yz} \sqcup S_{zx}, [/math]
where
[math] S_{x} := \{ p : v_p(x) > 0, v_p(y) = v_p(z) = 0 \}[/math]
[math] S_{xy} := \{ p : v_p(x) = v_p(y) > 0, v_p(z) = 0 \} [/math]
and so on. The prime factorizations of
[math] x, y, z [/math] are:
[math] x = 2^{v_2(x)} \left(\prod_{p \in S_{x}} p^{v_p(x)} \right) \left(\prod_{p \in S_{xy}} p^{v_p(x)} \right) \left(\prod_{p \in S_{zx}} p^{v_p(x)} \right) [/math]

[math]\quad = 2^{v_2(x)} \left(\prod_{p \in S_{x}} p^{v_p(x)} \right) \left(\prod_{p \in S_{xy}} p^{v_p(y)} \right) \left(\prod_{p \in S_{zx}} p^{v_p(z)} \right), [/math]

[math]y = 2^{v_2(y)} \left(\prod_{p \in S_{y}} p^{v_p(y)} \right) \left(\prod_{p \in S_{xy}} p^{v_p(y)} \right) \left(\prod_{p \in S_{yz}} p^{v_p(y)} \right) [/math]

[math]\quad = 2^{v_2(y)} \left(\prod_{p \in S_{y}} p^{v_p(y)} \right) \left(\prod_{p \in S_{xy}} p^{v_p(x)} \right) \left(\prod_{p \in S_{yz}} p^{v_p(z)} \right), [/math]

[math]z = 2^{v_2(z)} \left(\prod_{p \in S_{z}} p^{v_p(z)} \right) \left(\prod_{p \in S_{yz}} p^{v_p(z)} \right) \left(\prod_{p \in S_{yz}} p^{v_p(z)} \right) [/math]

[math]\quad = 2^{v_2(z)} \left(\prod_{p \in S_{z}} p^{v_p(z)} \right) \left(\prod_{p \in S_{yz}} p^{v_p(y)} \right) \left(\prod_{p \in S_{zx}} p^{v_p(x)} \right). [/math]

If we write
[math] u_p := \begin{cases} v_p(x) & ~\text{if}~ p \in S_{x} \\ v_p(y) & ~\text{if}~ p \in S_{y} \\ v_p(z) & ~\text{if}~ p \in S_{z} \\ v_p(x) = v_p(y) & ~\text{if}~ p \in S_{xy} \\ v_p(y) = v_p(z) & ~\text{if}~ p \in S_{yz} \\ v_p(z) = v_p(x) & ~\text{if}~ p \in S_{zx}, \end{cases} [/math]

(note that it is well-defined) then a simplified presentation

[math] x = 2^{v_2(x)} \prod_{p \in S_{x} \sqcup S_{xy} \sqcup S_{zx} } p^{u_p} [/math]

[math]y = 2^{v_2(y)} \prod_{p \in S_{y} \sqcup S_{xy} \sqcup S_{yz} } p^{u_p} [/math]

[math] z = 2^{v_2(z)} \prod_{p \in S_{z} \sqcup S_{yz} \sqcup S_{zx} } p^{u_p} [/math]

and
[math] \gcd(x, y) = 2^{\min(v_2(x), v_2(y))} \prod_{p \in S_{xy}} p^{u_p} [/math]

[math] \gcd(y, z) = 2^{\min(v_2(y), v_2(z))} \prod_{p \in S_{yz}} p^{u_p} [/math]

[math]\gcd(z,x) = 2^{\min(v_2(z), v_2(x))} \prod_{p \in S_{zx}} p^{u_p} [/math]

[math] \mathrm{lcm}(x,y,z) = 2^{\max(v_2(x), v_2(y), v_2(z))} \prod_{p \in S} p^{u_p}[/math]

[math]\quad = 2^{\max(v_2(x), v_2(y), v_2(z))} w \prod_{p \in S_{xy} \sqcup S_{yz} \sqcup{zx} } p^{u_p},[/math]

where

[math]w := \prod_{p \in S_{x} \sqcup S_{y} \sqcup S_{z}} p^{u_p}[/math]

follow.

For the valuations at 2, first consider the case that one of [math] v_2(x), v_2(y), v_2(z)[/math] is 0 and the other two take a common value [math] t \geq 0 [/math]. *Edit* : [math] t > 0 [/math] is replaced with [math] t \geq 0 [/math] to cover the case [math] v_2(x) = v_2(y) = v_2(z) = 0. [/math]
Observe that
[math] 2^{-t} \mathrm{lcm}(x,y,z) = 2^{-t} w \gcd(x,y) \gcd(y,z) \gcd(z,x). [/math]
Thus, (0) implies that
[math] w \gcd(x,y) \gcd(y,z) \gcd(z,x) = \gcd(x,y) + \gcd(y,z) + \gcd(z,x). [/math]
Put the multiset
[math] \{e, f, g \} := \{\gcd(x,y), \gcd(y,z), \gcd(z,x) \} [/math] assuming
[math] e \geq f \geq g \geq 1. [/math] If [math] w f g > 3 [/math] then
[math] w e f g > 3 e \geq e + f + g. [/math] Thus [math] w f g \leq 3 [/math] is necessary for [math] w e f g = e + f + g. [/math]
When
[math] w f g = 1, [/math] it is impossible that [math] e = e + f + g. [/math]
When
[math] w f g = 2, [/math] since [math] w [/math] is odd by definition, it holds that[math] w = 1, \{f, g\} = \{1, 2\}, [/math] we have [math] 2 e = e + 1 + 2 [/math] which is attained by [math] e = 3. [/math] [math] \gcd(x,y) = 3, \gcd(y,z) = 2, \gcd(z,x) = 1, \mathrm{lcm}(x,y,z) = 6 [/math] is attained by [math] y = 6, x = 2, z = 3. [/math] Any permutation of [math] (6, 3, 2) [/math] is fine for the relation (0).
When
[math] wfg = 3, [/math] [math] w [/math] is [math] 1 [/math] or [math] 3 [/math]. When [math] w = 1, [/math] by [math] \{f, g\} = \{1, 3\}, [/math] we have [math] 3 e = e + 1 + 3 [/math] and [math] e = 2. [/math] Thus, [math] \{e, f, g\} = \{1, 2, 3\} [/math] yields the same set of the solutions as the last case after the permutation. When [math] w = 3, [/math] we have [math] f = g = 1 [/math] and [math] 3 e = e + 1 + 1. [/math] Thus, [math] e = f = g = 1. [/math] [math]\gcd(x,y) = 1, \gcd(y,z) = 1, \gcd(z,x) = 1, \mathrm{lcm}(x,y,z) = 3 [/math] is attained by [math] x = 3, y = z = 1[/math](and any permutation of them is fine for (0)).

Next, consider the case that two of [math] v_2(x), v_2(y), v_2(z)[/math] are 0 and the other is [math] t > 0 [/math]. Observe that [math] 2^{-t} \mathrm{lcm}(x,y,z) = w \gcd(x,y) \gcd(y,z) \gcd(z,x). [/math]
Thus, (0) implies that
[math] 2^t w \gcd(x,y) \gcd(y,z) \gcd(z,x) = \gcd(x,y) + \gcd(y,z) + \gcd(z,x). [/math]
Again writing
[math]\{e, f, g \} := \{\gcd(x,y), \gcd(y,z), \gcd(z,x) \} [/math] with
[math] e \geq f \geq g \geq 1, [/math]

[math]2^t w f g \leq 3 [/math]

is necessary. By [math] t > 0, [/math] the only possible case is [math] t = 1, w = f = g = 1. [/math]
In this case,
[math] 2 e = e + 1 + 1, [/math] i.e., [math] e = 2 [/math] holds. [math]\gcd(x,y) = 2, \gcd(y,z) = 1, \gcd(z,x) = 1, \mathrm{lcm}(x,y,z) = 4[/math]
is attained by
[math] (x, y, z) = (4, 2, 1). [/math] Any permutation is fine for (0). However, this violates the assumption that two of [math] v_2(x), v_2(y), v_2(z)[/math] are 0.

There remains the case [math] \{v_2(x), v_2(y), v_2(z) \} = \{0, 1, 2\}. [/math]
Observe that
[math] 2^{-2} \mathrm{lcm}(x, y, z) = 2^{-0} 2^{-1} 2^{-0} w \gcd(x,y) \gcd(y,z) \gcd(z,x) [/math] or equivalently [math] \mathrm{lcm}(x, y, z) = 2 w \gcd(x,y) \gcd(y,z) \gcd(z,x) [/math] holds.
Again by writing
[math] \{e, f, g \} := \{\gcd(x,y), \gcd(y,z), \gcd(z,x) \} [/math] with
[math] e \geq f \geq g \geq 1, [/math] (0) requires that [math] e + f + g = 2 w e f g [/math] which can be attained only when [math] 2 w f g \leq 3. [/math]In this case, it is forced that [math] w = f = g = 1. [/math]By the same calculation as the last case, [math](x, y, z) = (4, 2, 1) [/math] or its permutation. This time, [math]\{v_2(x), v_2(y), v_2(z) \} = \{0, 1, 2\}[/math] is attained.

Therefore, (0) is attained only by [math] (x, y, z) = (6,3,2), (4,2,1), (3, 1, 1) [/math] and their permutations. Recalling the constraint [math] x \leq y \leq z, [/math] the solution is [math] (x, y, z) \in \{ (2, 3, 6), (1, 2, 4), (1, 1, 3) \}. [/math]

Profile photo for Quora User

[math]\boxed{[x,y,z]=[1,1,3],[1,2,4],[2,3,6]}[/math] are the only solutions.

Obviously [math]x=y=z[/math] is impossible because then [math]x=3x[/math]. If [math]x[/math], [math]y[/math] and [math]z[/math] are all co-prime to one another, [math]xyz=3[/math], which has a solution [math][x,y,z]=[1,1,3][/math] satisfying [math]x \le y \le z[/math]

Otherwise, [math]lcm(x,y,z) \le 2 \times max(gcd(x,y),gcd(y,z),gcd(z,x))+1[/math] because at least one of: [math]gcd(x,y)[/math], [math]gcd(y,z)[/math] and [math]gcd(z,x)[/math] is [math]1[/math].

(i) [math]x<y=z\implies xz \le 2z+1[/math]; this can only be satisfied when [math]x=[1,2][/math] because [math]y=z[/math] is at least [math]2[/math].

[math]x=1 \implies z=z+2[/math], which is impossible.

[math]x=2 \implies 2z=2+z[/math], which works only for [math]z=2[/math], which is impossible because [math]x<y=z[/math]

(ii) [math]x=y<z\implies xz \le[/math]

[math]\boxed{[x,y,z]=[1,1,3],[1,2,4],[2,3,6]}[/math] are the only solutions.

Obviously [math]x=y=z[/math] is impossible because then [math]x=3x[/math]. If [math]x[/math], [math]y[/math] and [math]z[/math] are all co-prime to one another, [math]xyz=3[/math], which has a solution [math][x,y,z]=[1,1,3][/math] satisfying [math]x \le y \le z[/math]

Otherwise, [math]lcm(x,y,z) \le 2 \times max(gcd(x,y),gcd(y,z),gcd(z,x))+1[/math] because at least one of: [math]gcd(x,y)[/math], [math]gcd(y,z)[/math] and [math]gcd(z,x)[/math] is [math]1[/math].

(i) [math]x<y=z\implies xz \le 2z+1[/math]; this can only be satisfied when [math]x=[1,2][/math] because [math]y=z[/math] is at least [math]2[/math].

[math]x=1 \implies z=z+2[/math], which is impossible.

[math]x=2 \implies 2z=2+z[/math], which works only for [math]z=2[/math], which is impossible because [math]x<y=z[/math]

(ii) [math]x=y<z\implies xz \le 2x+1[/math]; because [math]z[/math] is at least [math]2[/math] and [math]x=y[/math] at least [math]1[/math], this can only be satisfied when [math]z=[2,3][/math]

[math]z=2 \implies x=y=1[/math]. This doesn't work because the equation in the question leads to [math]2 \ne 1+1+1[/math]

[math]z=3 \implies 3x \le 2x+1 \implies x=1 \implies y=1[/math]

[math][x,y,z]=[1,1,3][/math] works because [math]3=1+1+1[/math]

So, [math]x<y<z[/math] is all that is left.

(iii) [math]x<y<z[/math]:

a) [math]gcd(x,y)=1 \implies gcd(y,z) \le y[/math] and [math]gcd(z,x) \le x[/math] and [math]lcm(x,y,z) \ge xy[/math]

Comparing [math]xy[/math] and [math]1+gcd(y,z)+gcd(z,x) \le 1+x+y[/math] for [math]x<y[/math], only [math]x=[1,2][/math] would cause [math]xy \le 1+x+y[/math]. For [math]y>x \ge 3[/math], [math]xy>1+x+y[/math], so, [math]lcm(x,y,z)>1+gcd(y,z)+gcd(z,x)[/math]

[math]x=1 \implies lcm(x,y,z)=lcm(y,z)=2+gcd(y,z)[/math]. [math]lcm(y,z) \ge z[/math] and [math]gcd(y,z) \le y \implies 2+gcd(y,z) \le 2+y[/math]. To make something that is, at the maximum, [math]2+y[/math], equal something that is at least [math]z>y[/math], we need to only check the possibilities of [math]z=y+1[/math] and [math]z=y+2[/math].

[math]z=y+1[/math]:

[math]y[/math] and [math]z=y+1[/math] are co-prime, so [math]gcd(y,z)=1[/math], which means [math]lcm(y,z)=3 \implies [y,z]=[1,3][/math] for [math]y<z[/math]. But then [math]x<y \implies x<1[/math], which is impossible in this case. And [math]z \ne y+1[/math], as required.

[math]z=y+2[/math]:

if [math]y[/math] and [math]z[/math] are both odd, [math]gcd(y,z)=1[/math], which means [math]lcm(y,z)=3[/math], which means that [math][y,z]=[1,3][/math] for [math]y<z[/math]. Again, this is ruled out because [math]x<y<1[/math] is impossible.

if [math]y[/math] and [math]z[/math] are both even, [math]gcd(y,z)=2 \implies lcm(y,z)=1+2+1=4[/math], which, for [math]y[/math] and [math]z[/math] both even and [math]y<z \implies [y,z]=[2,4] \implies [x,y,z]=[1,2,4][/math], which works.

[math]x=2[/math]: [math]xy \le x+y+1 \implies 2y \le y+3[/math], which is only valid for [math]y=3[/math]; otherwise, for [math]y>4[/math], [math]2y>y+3[/math]. [math]z[/math] cannot be co-prime to both [math]x[/math] and [math]y[/math], so [math]z=2p[/math] or [math]3q[/math], where [math][p,q]>1[/math]

[math]lcm(x,y,z)\ge 2p[/math] or [math]3q[/math] and [math]1+gcd(y,z)+gcd(z,x) \le 6[/math] means that [math]2p[/math] or [math]3q=[4,6] \implies p=[2,3][/math]

[math]p=2 \implies z=4[/math]. But [math]lcm(2,3,4)=12>1+1+2[/math]

[math]p=3 \implies z=6[/math] and [math]lcm(2,3,6)=6=1+3+2=6[/math], works

[math]q=2 \implies z=6[/math] and the same [math][x,y,z]=[2,3,6][/math] works

b) [math]gcd(y,z)=1 \implies gcd(x,y) \le x[/math] and [math]gcd(z,x) \le x[/math]

[math]lcm(x,y,z)\ge yz[/math] and [math]1+gcd(x,y)+gcd(z,x) \le 1+2x[/math]

[math]yz \le 1+2x \implies z \le \frac{2x+1}{y}<2[/math] is impossible for [math]1\le x<y<z[/math], so no solutions exist.

c) [math]gcd(z,x)=1 \implies gcd(x,y) \le x[/math] and [math]gcd(y,z) \le y[/math]

[math]lcm (x,y,z) \ge xz[/math] and [math]1+gcd(x,y)+gcd(z,x) \le 1+x+y[/math]

[math]xz \le 1+x+y<1+2y \implies z \le \frac{1+2y}{x}[/math], which means that [math]x=1[/math]; for [math]x>1[/math], [math]z \le y[/math], which is impossible.

[math]x=1 \implies lcm(x,y,z)=lcm(y,z)=2+gcd(y,z)[/math]; this repeats the [math][x,y,z]=[1,2,4][/math] solution in a).

This search engine can reveal so much. Click here to enter any name, wait for it, brace yourself.
Profile photo for Brian Sittinger

Assuming such a solution exists, multiplying both sides by [math]4[/math] and completing the square on the left side yields

[math]\begin{align*} (2x + 1)^2 &= 4y^4 + 4y^3 + 4y^2 + 4y + 1\\ &= (2y^2 + y + 1)^2 - (y^2 - 2y). \end{align*} \tag*{}[/math]

Then, we see that for all [math]y \geq 2[/math]:

[math](2y^2 + y)^2 \leq 4y^4 + 4y^3 + 4y^2 + 4y + 1 \leq (2y^2 + y + 1)^2, \tag*{}[/math]

where the left part of the inequality comes from

[math](4y^4 + 4y^3 + 4y^2 + 4y + 1) - (2y^2 + y)^2 = 3y^2 + 4y + 1 > 0. \tag*{}[/math]

Therefore when [math]y \geq 2[/math], we have bounded [math]4y^4 + 4y^3 + 4y^2 + 4y + 1[/math] between two consecutive perfect squares. This implies that [math]x[/math] can’t be an int

Assuming such a solution exists, multiplying both sides by [math]4[/math] and completing the square on the left side yields

[math]\begin{align*} (2x + 1)^2 &= 4y^4 + 4y^3 + 4y^2 + 4y + 1\\ &= (2y^2 + y + 1)^2 - (y^2 - 2y). \end{align*} \tag*{}[/math]

Then, we see that for all [math]y \geq 2[/math]:

[math](2y^2 + y)^2 \leq 4y^4 + 4y^3 + 4y^2 + 4y + 1 \leq (2y^2 + y + 1)^2, \tag*{}[/math]

where the left part of the inequality comes from

[math](4y^4 + 4y^3 + 4y^2 + 4y + 1) - (2y^2 + y)^2 = 3y^2 + 4y + 1 > 0. \tag*{}[/math]

Therefore when [math]y \geq 2[/math], we have bounded [math]4y^4 + 4y^3 + 4y^2 + 4y + 1[/math] between two consecutive perfect squares. This implies that [math]x[/math] can’t be an integer.

Thus, it only remains to check whether there is a positive integer solution for x when [math]y = 1, 2[/math]. By inspection, we find that the only solution in positive integers is

[math]\boxed{(x, y) = (5, 2)}. \tag*{}[/math]

Profile photo for Doug Dillon

[math]x^3+y^3=x^2+42xy+y^2\tag*{*)}[/math]

Glad you asked for HOW.

HOW.

  1. Deal with x=y and in doing so finding the pair (22, 22).
  2. Suppose that the GCD(x,y)=d and let x=dX and y=dY. Make the substitution and cancel out some d’s.
  3. See if you can come up with [math]X^2-XY+Y^2[/math] divides [math]X^2+42XY+Y^2[/math].
  4. Go one step farther to realize that [math]X^2-XY+Y^2[/math] must divide 43 which is nice since 43 is prime.
  5. Deduce that [math]X^2-XY+Y^2 =1[/math] or [math]43[/math].
  6. With [math]X^2-XY+Y^2–1=0[/math] viewed as a quadratic in X, insist that its discriminant be a square.
  7. If [math]4–3Y^2[/math] is a square, there is only one acceptable value for Y and then find the corresponding X.
  8. You should discove

[math]x^3+y^3=x^2+42xy+y^2\tag*{*)}[/math]

Glad you asked for HOW.

HOW.

  1. Deal with x=y and in doing so finding the pair (22, 22).
  2. Suppose that the GCD(x,y)=d and let x=dX and y=dY. Make the substitution and cancel out some d’s.
  3. See if you can come up with [math]X^2-XY+Y^2[/math] divides [math]X^2+42XY+Y^2[/math].
  4. Go one step farther to realize that [math]X^2-XY+Y^2[/math] must divide 43 which is nice since 43 is prime.
  5. Deduce that [math]X^2-XY+Y^2 =1[/math] or [math]43[/math].
  6. With [math]X^2-XY+Y^2–1=0[/math] viewed as a quadratic in X, insist that its discriminant be a square.
  7. If [math]4–3Y^2[/math] is a square, there is only one acceptable value for Y and then find the corresponding X.
  8. You should discover that in this case X and Y are equal which we dealt with in number 1.
  9. With [math]X^2-XY+Y^2–43=0[/math] viewed as a quadratic in X, insist that its discriminant be square.
  10. If [math]172–3Y^2[/math] is a square , there are only 7 values of Y to try. Try them
  11. Having found all candidates for Y, deduce the corresponding X’s.
  12. But we are not finished since x=dX and y=dY. So substitute into * and deal with equations only involving d and solve them.
  13. Tidy up and never ask this question again.
Profile photo for Mark Bradley

Where do I start?

I’m a huge financial nerd, and have spent an embarrassing amount of time talking to people about their money habits.

Here are the biggest mistakes people are making and how to fix them:

Not having a separate high interest savings account

Having a separate account allows you to see the results of all your hard work and keep your money separate so you're less tempted to spend it.

Plus with rates above 5.00%, the interest you can earn compared to most banks really adds up.

Here is a list of the top savings accounts available today. Deposit $5 before moving on because this is one of th

Where do I start?

I’m a huge financial nerd, and have spent an embarrassing amount of time talking to people about their money habits.

Here are the biggest mistakes people are making and how to fix them:

Not having a separate high interest savings account

Having a separate account allows you to see the results of all your hard work and keep your money separate so you're less tempted to spend it.

Plus with rates above 5.00%, the interest you can earn compared to most banks really adds up.

Here is a list of the top savings accounts available today. Deposit $5 before moving on because this is one of the biggest mistakes and easiest ones to fix.

Overpaying on car insurance

You’ve heard it a million times before, but the average American family still overspends by $417/year on car insurance.

If you’ve been with the same insurer for years, chances are you are one of them.

Pull up Coverage.com, a free site that will compare prices for you, answer the questions on the page, and it will show you how much you could be saving.

That’s it. You’ll likely be saving a bunch of money. Here’s a link to give it a try.

Consistently being in debt

If you’ve got $10K+ in debt (credit cards…medical bills…anything really) you could use a debt relief program and potentially reduce by over 20%.

Here’s how to see if you qualify:

Head over to this Debt Relief comparison website here, then simply answer the questions to see if you qualify.

It’s as simple as that. You’ll likely end up paying less than you owed before and you could be debt free in as little as 2 years.

Missing out on free money to invest

It’s no secret that millionaires love investing, but for the rest of us, it can seem out of reach.

Times have changed. There are a number of investing platforms that will give you a bonus to open an account and get started. All you have to do is open the account and invest at least $25, and you could get up to $1000 in bonus.

Pretty sweet deal right? Here is a link to some of the best options.

Having bad credit

A low credit score can come back to bite you in so many ways in the future.

From that next rental application to getting approved for any type of loan or credit card, if you have a bad history with credit, the good news is you can fix it.

Head over to BankRate.com and answer a few questions to see if you qualify. It only takes a few minutes and could save you from a major upset down the line.

How to get started

Hope this helps! Here are the links to get started:

Have a separate savings account
Stop overpaying for car insurance
Finally get out of debt
Start investing with a free bonus
Fix your credit

Profile photo for Terry Moore

How do I find all pairs [math](x,y)[/math] of positive real numbers such that [math]xy[/math] is an integer and [math]x+y=\lfloor x^2−y^2\rfloor[/math]?

Clearly [math]x+y[/math] is an integer, so let [math]w=x+y[/math]. Then [math]x^2-y^2=(x-y)(x+y)[/math]. Now let [math]d=x-y\ge0[/math] so that [math]2x=w+d[/math], [math]2y=w-d[/math].

From [math]x+y=\lfloor x^2-y^2\rfloor[/math], [math]0\le x+y\le(x-y)(x+y)<x+y+1[/math],

i.e. [math]0\le w\le dw<w+1[/math], i.e. [math]1\le d<1+\frac1w[/math].

For every integer [math]w[/math], there will be infinitely many values for [math]d[/math] in the above range.

But we also require that [math]xy[/math] be an integer, i.e. [math]4xy=w^2-d^2[/math] is a multiple of [math]4[/math] and, as [math]w[/math] is an integer, [math]d^2[/math] must be an integer.

If [math]w[/math] is even then [math]d[/math] must be an even integer, and if [math]w[/math] is odd the

How do I find all pairs [math](x,y)[/math] of positive real numbers such that [math]xy[/math] is an integer and [math]x+y=\lfloor x^2−y^2\rfloor[/math]?

Clearly [math]x+y[/math] is an integer, so let [math]w=x+y[/math]. Then [math]x^2-y^2=(x-y)(x+y)[/math]. Now let [math]d=x-y\ge0[/math] so that [math]2x=w+d[/math], [math]2y=w-d[/math].

From [math]x+y=\lfloor x^2-y^2\rfloor[/math], [math]0\le x+y\le(x-y)(x+y)<x+y+1[/math],

i.e. [math]0\le w\le dw<w+1[/math], i.e. [math]1\le d<1+\frac1w[/math].

For every integer [math]w[/math], there will be infinitely many values for [math]d[/math] in the above range.

But we also require that [math]xy[/math] be an integer, i.e. [math]4xy=w^2-d^2[/math] is a multiple of [math]4[/math] and, as [math]w[/math] is an integer, [math]d^2[/math] must be an integer.

If [math]w[/math] is even then [math]d[/math] must be an even integer, and if [math]w[/math] is odd then [math]w^2[/math] is odd and [math]d^2[/math] must be an odd integer. However, [math]d[/math] need not be an integer, and if [math]w>1[/math], it cannot be.

The case [math]w=1[/math] gives [math]d=1[/math] so [math]x=1[/math], [math]y=0[/math], which contradicts the given condition that [math]x>0[/math] and [math]y>0[/math].

If [math]w=2[/math] then [math]1\le d<1\frac12[/math], i.e. [math]1\le d^2<2\frac14[/math], so [math]d=1[/math] or [math]d^2=2[/math]. If [math]d=1[/math] then [math]x=1.5[/math], [math]y=1[/math] and [math]xy[/math] is not an integer; if [math]d^2=2[/math] then [math]2x=2+\sqrt2[/math], [math]2y=2-\sqrt2[/math]. But then [math]4xy=2[/math], so [math]xy[/math] is not an integer.

If [math]w\ge3[/math] then [math]1\le d<1\frac13[/math], i.e. [math]1\le d^2<1\frac79[/math], so [math]d=1[/math] and [math]x=\frac12(w+1)[/math], [math]y=\frac12(w-1)[/math]. In that case, [math]xy[/math] an integer only if [math]w[/math] is odd. In that case [math]x[/math] is an integer and [math]y=x-1[/math]. That is the obvious trivial solution.

So the solutions are [math]y=x-1[/math] where [math]x[/math] is an integer.

Profile photo for Eleftherios Argyropoulos

We want to solve the Diophantine equation:

[math]2^x+17 = y^4 … (1)[/math]

Evidently, [math]y[/math] must be odd. By working modulo[math]17[/math] for both sides, we have:

For the LHS:

[math]2^1 ≡ 2(mod17) … (2)[/math]

[math]2^2 ≡ 4(mod17) … (3)[/math]

[math]2^3 ≡ 8(mod17) … (4)[/math]

[math]2^4 ≡ 16(mod17) … (5)[/math]

[math]2^5 ≡ 15(mod17) … (6)[/math]

[math]2^6 ≡ 13(mod17) … (7)[/math]

[math]2^7 ≡ 9(mod17) … (8)[/math]

[math]2^8 ≡ 1(mod17) … (9)[/math]

[math]2^9 ≡ 2(mod17) … (10)[/math]

While for the RHS

For [math]m = 1 => (2m+1)^4 ≡ 13(mod17) … (11)[/math]

For [math]m = 2 => (2m+1)^4 ≡ 13(mod17) … (12)[/math]

For [math]m = 3 => (2m+1)^4 ≡ 4(mod17) … (13)[/math]

For [math]m = 4 => (2m+1)^4 ≡ 16(mod17) … (14)[/math]

For [math]m = 5 => (2m+1)^4 ≡ 4(mod17) … (15)[/math]

For [math]m = 6 => (2m+1)^4 ≡ 1(mod17) … (16)[/math]

For [math]m = 7 => (2m+1)^[/math]

We want to solve the Diophantine equation:

[math]2^x+17 = y^4 … (1)[/math]

Evidently, [math]y[/math] must be odd. By working modulo[math]17[/math] for both sides, we have:

For the LHS:

[math]2^1 ≡ 2(mod17) … (2)[/math]

[math]2^2 ≡ 4(mod17) … (3)[/math]

[math]2^3 ≡ 8(mod17) … (4)[/math]

[math]2^4 ≡ 16(mod17) … (5)[/math]

[math]2^5 ≡ 15(mod17) … (6)[/math]

[math]2^6 ≡ 13(mod17) … (7)[/math]

[math]2^7 ≡ 9(mod17) … (8)[/math]

[math]2^8 ≡ 1(mod17) … (9)[/math]

[math]2^9 ≡ 2(mod17) … (10)[/math]

While for the RHS

For [math]m = 1 => (2m+1)^4 ≡ 13(mod17) … (11)[/math]

For [math]m = 2 => (2m+1)^4 ≡ 13(mod17) … (12)[/math]

For [math]m = 3 => (2m+1)^4 ≡ 4(mod17) … (13)[/math]

For [math]m = 4 => (2m+1)^4 ≡ 16(mod17) … (14)[/math]

For [math]m = 5 => (2m+1)^4 ≡ 4(mod17) … (15)[/math]

For [math]m = 6 => (2m+1)^4 ≡ 1(mod17) … (16)[/math]

For [math]m = 7 => (2m+1)^4 ≡ 16(mod17) … (17)[/math]

For [math]m = 8 => (2m+1)^4 ≡ 0(mod17) … (18)[/math]

For [math]m = 9 => (2m+1)^4 ≡ 16(mod17) … (19)[/math]

For [math]m = 10 => (2m+1)^4 ≡ 1(mod17) … (20)[/math]

For [math]m = 11 => (2m+1)^4 ≡ 4(mod17) … (21)[/math]

For [math]m = 12 => (2m+1)^4 ≡ 16(mod17) … (22)[/math]

For [math]m = 13 => (2m+1)^4 ≡ 4(mod17) … (23)[/math]

For [math]m = 14 => (2m+1)^4 ≡ 13(mod17) … (24)[/math]

For [math]m = 15 => (2m+1)^4 ≡ 13(mod17) … (25)[/math]

For [math]m = 16 => (2m+1)^4 ≡ 1(mod17) … (26)[/math]

For [math]m = 17 => (2m+1)^4 ≡ 1(mod17) … (27)[/math]

Hence, the only agreement for both sides is when:

[math]2^n[/math] is congruent to [math]1[/math], [math]4[/math], [math]13[/math], or [math]16(mod17)[/math] and this happens only if [math]x[/math] is even. Hence, there exists positive integer [math]p[/math], such that [math]x = 2p[/math], which leads to the equation:

[math]2^{2p}+17 = (y^2)^2 => (y^2)^2–(2^p)^2 = 17 => [/math]

[math](y^2–2^p)(y^2+2^p) = 17 … (28)[/math]

Now, since [math]17[/math] is prime and since [math]y^2+2^p[/math] is striclty positive and [math]y^2+2^p > y^2–2^p[/math], it follows that we can only have:

[math]y^2–2^p = 1 ... (29)[/math]

and:

[math]y^2+2^p = 17 ... (30)[/math]

By solving the system of equations [math](29)[/math] and [math](30)[/math], we easily obtain:

[math]2y^2 = 18 => y = 3[/math], therefore [math]2^p = 8 => p = 3[/math] and [math]x = 6[/math].

Hence, there is only one positive integral solution and this is:

[math](x[/math], [math]y) = (6[/math], [math]3)[/math]

Try IntelliJ IDEA, a JetBrains IDE, and enjoy productive Java Enterprise development!
Profile photo for Jan van Delden

Since

[math]x+y=\lfloor x^2-y^2 \rfloor[/math]

we also know that [math]x+y[/math] is integer. Lets set [math]x+y=n, xy=m[/math], with [math]n,m \in \mathbb{N}[/math]. From this we obtain

[math]x+\dfrac{m}{x}=n[/math]

or

[math]x^2-nx+m=0[/math]

or

[math](2x-n)^2+4m=n^2[/math]

Thus

[math]x=\dfrac{1}{2}\left(n \pm \sqrt{n^2–4m}\right)[/math]

and (matching signs!)

[math]y=\dfrac{1}{2}\left(n \mp \sqrt{n^2–4m}\right)[/math]

Making

[math]x-y=\pm \sqrt{n^2–4m}[/math]

And we find

[math]x^2-y^2=\pm n \sqrt{n^2–4m}[/math]

We thus need that

[math]\lfloor \pm n\sqrt{n^2–4m}\rfloor =n[/math]

Since [math]x,y[/math] are positive real numbers and [math]x+y=n \in \mathbb{N}[/math], we take [math]n\ge 1[/math] and we must use the plus sign inside the floor function to arrive at a positive integer. We need

[math]n\le n\sqrt{n^2[/math]

Since

[math]x+y=\lfloor x^2-y^2 \rfloor[/math]

we also know that [math]x+y[/math] is integer. Lets set [math]x+y=n, xy=m[/math], with [math]n,m \in \mathbb{N}[/math]. From this we obtain

[math]x+\dfrac{m}{x}=n[/math]

or

[math]x^2-nx+m=0[/math]

or

[math](2x-n)^2+4m=n^2[/math]

Thus

[math]x=\dfrac{1}{2}\left(n \pm \sqrt{n^2–4m}\right)[/math]

and (matching signs!)

[math]y=\dfrac{1}{2}\left(n \mp \sqrt{n^2–4m}\right)[/math]

Making

[math]x-y=\pm \sqrt{n^2–4m}[/math]

And we find

[math]x^2-y^2=\pm n \sqrt{n^2–4m}[/math]

We thus need that

[math]\lfloor \pm n\sqrt{n^2–4m}\rfloor =n[/math]

Since [math]x,y[/math] are positive real numbers and [math]x+y=n \in \mathbb{N}[/math], we take [math]n\ge 1[/math] and we must use the plus sign inside the floor function to arrive at a positive integer. We need

[math]n\le n\sqrt{n^2–4m} < n+1[/math]

Or

[math]1 \le \sqrt{n^2–4m} < 1+\dfrac{1}{n}[/math]

Or

[math]1 \le n^2–4m < 1+\dfrac{2}{n}+\dfrac{1}{n^2}[/math]

If [math]n=2[/math] we find [math]1\le 2^2–4m \le 2[/math], which has no solutions [math]m\in \mathbb{N}[/math]. If [math]n>2[/math] then we necessarily have

[math]n^2–4m=1[/math]

Set [math]n=2k-1[/math] and find [math]4k^2-4k=4m[/math], thus [math]m=k(k-1)[/math]. And we find

[math]x=\dfrac{1}{2}(2k-1+1)=k[/math]

[math]y=\dfrac{1}{2}(2k-1–1)=k-1[/math]

Or, if we make sure that [math]x,y>0[/math]:

[math]\boxed{(x,y)\in \{(k+1,k)| \; k\in \mathbb{N} \}}[/math]

Profile photo for Brian Sittinger

Assume without loss of generality that [math]x \geq y[/math]. Then, cubing both sides yields

[math]7x^2 - 13xy + 7y^2 = (x - y + 1)^3. \tag*{}[/math]

Letting [math]t = x - y[/math], then [math]7t^2 = 7(x^2 - 2xy + y^2)[/math]. Then, this can be rewritten as

[math]7t^2 - x \cdot (-(x - t)) = (t + 1)^3. \tag*{}[/math]

Now, we rearrange this equation as a quadratic equation in [math]x[/math]:

[math]x^2 - tx + (-t^3 + 4t^2 - 3t - 1). \tag*{}[/math]

Applying the quadratic formula, solving for [math]x[/math] yields

[math]x = \displaystyle \frac{t \pm \sqrt{(t - 2)^2(4t + 1)}}{2} = \frac{t \pm |t - 2| \sqrt{4t + 1}}{2}. \tag*{}[/math]

Since we want [math]x \in \mathbb{N}[/math] and [math]4t + 1[/math] is an odd integer, this forces [math]4t + 1 = (2k+1)^[/math]

Assume without loss of generality that [math]x \geq y[/math]. Then, cubing both sides yields

[math]7x^2 - 13xy + 7y^2 = (x - y + 1)^3. \tag*{}[/math]

Letting [math]t = x - y[/math], then [math]7t^2 = 7(x^2 - 2xy + y^2)[/math]. Then, this can be rewritten as

[math]7t^2 - x \cdot (-(x - t)) = (t + 1)^3. \tag*{}[/math]

Now, we rearrange this equation as a quadratic equation in [math]x[/math]:

[math]x^2 - tx + (-t^3 + 4t^2 - 3t - 1). \tag*{}[/math]

Applying the quadratic formula, solving for [math]x[/math] yields

[math]x = \displaystyle \frac{t \pm \sqrt{(t - 2)^2(4t + 1)}}{2} = \frac{t \pm |t - 2| \sqrt{4t + 1}}{2}. \tag*{}[/math]

Since we want [math]x \in \mathbb{N}[/math] and [math]4t + 1[/math] is an odd integer, this forces [math]4t + 1 = (2k+1)^2[/math] for some non-negative integer [math]k[/math]. Hence [math]t = k^2 + k[/math], and we obtain

[math]x = \displaystyle \frac{(k^2 + k) \pm |k^2 + k - 2| \cdot (2k+1)}{2}. \tag*{}[/math]

Next since we want [math]x > 0[/math], we take the plus sign in the formula for [math]x[/math] above:

[math]x = \displaystyle \frac{(k^2 + k) + |(k+2)(k-1)| \cdot (2k+1)}{2}. \tag*{}[/math]

Hence, solving for [math]y[/math] yields

[math]\displaystyle y = x - t = x - (k^2 + k) = \frac{-(k^2 + k) + |(k+2)(k-1)| \cdot (2k+1)}{2}. \tag*{}[/math]

If [math]k = 0[/math], then we obtain [math](x, y) = (1, 1)[/math]. If [math]k = 1[/math], then [math]y < 0[/math] and we thus ignore this solution.

Hence, we can assume that [math]k \geq 2[/math] and remove the absolute value signs. This yields [math]x = k^3 + 2k^2 - k - 1[/math]; this is easily checked to always be positive. Similarly, [math]y = k^3 + k^2 - 2k - 1 > 0[/math] for these values of [math]k[/math].


Therefore, all positive integers to the given Diophantine equation are given by

[math]\boxed{(x, y) = (1, 1), \, (k^3 + 2k^2 - k - 1, k^3 + k^2 - 2k - 1) \text{ where } k \in \mathbb{N}_{\geq 2}.} \tag*{}[/math]

Profile photo for Quora User

[math]\boxed{[x,y]=[6,3]}[/math] is the only solution.

[math]y[/math] being odd, [math]2^x \equiv 0 \pmod 4[/math], so [math]x \ge 2[/math]

If [math]x[/math] is even, [math]2^x[/math] is a perfect square

If [math](2^\frac{x}{2}+1)^2-2^x=2^{\frac{x}{2}+1}+1>17[/math] or [math]x>6[/math], [math]2^x+17[/math] can never be a perfect square.

But, instead of checking for [math]x=[2,4,6][/math], we see that [math]2^6+17=81[/math], so [math]y \le 3[/math]

[math]y=3[/math], [math]x=6[/math] works. For [math]y \le 2[/math], [math]2^x+17>y^4[/math], so we don’t have any other solution.

If [math]x[/math] is odd, [math]2^x+17[/math] ends in [math][5,9][/math]. No fourth power ends in [math]9[/math]. So, [math]2^x+17[/math] ends in [math]5[/math] and [math]2^x[/math] ends in [math]8[/math], which means that [math]x=4m-1[/math], [math]m \ge 1[/math], and [math]y \equiv 0 \pmod 5[/math]

[math]2^{4m-1}+17=y^4 \implies 2^{4m}=2(y^4-17)[/math]

[math]y^4 \equiv [-4,-1,0,1,4] \pmod {1[/math]

[math]\boxed{[x,y]=[6,3]}[/math] is the only solution.

[math]y[/math] being odd, [math]2^x \equiv 0 \pmod 4[/math], so [math]x \ge 2[/math]

If [math]x[/math] is even, [math]2^x[/math] is a perfect square

If [math](2^\frac{x}{2}+1)^2-2^x=2^{\frac{x}{2}+1}+1>17[/math] or [math]x>6[/math], [math]2^x+17[/math] can never be a perfect square.

But, instead of checking for [math]x=[2,4,6][/math], we see that [math]2^6+17=81[/math], so [math]y \le 3[/math]

[math]y=3[/math], [math]x=6[/math] works. For [math]y \le 2[/math], [math]2^x+17>y^4[/math], so we don’t have any other solution.

If [math]x[/math] is odd, [math]2^x+17[/math] ends in [math][5,9][/math]. No fourth power ends in [math]9[/math]. So, [math]2^x+17[/math] ends in [math]5[/math] and [math]2^x[/math] ends in [math]8[/math], which means that [math]x=4m-1[/math], [math]m \ge 1[/math], and [math]y \equiv 0 \pmod 5[/math]

[math]2^{4m-1}+17=y^4 \implies 2^{4m}=2(y^4-17)[/math]

[math]y^4 \equiv [-4,-1,0,1,4] \pmod {17}[/math], so, [math]2(y^4-17) \equiv [-8,-2,0,2, 8] \pmod {17}[/math], but the [math]LHS=2^{4m} \equiv [-1,1] \pmod {17}[/math], so no solutions in odd [math]x[/math] exist.

Profile photo for Brian Sittinger

We want to solve the Diophantine equation

[math]x^2 - 12xy - 4x + 11y^2 - 6y - 5 = 0. \tag*{}[/math]

First, we complete the square with the first two terms in [math]x[/math]:

[math](x - 6y)^2 - 4x - 25y^2 - 6y - 5 = 0. \tag*{}[/math]

Next, we complete the square in [math]x - 6y[/math]:

[math]((x - 6y)^2 - 4(x - 6y) + 4) - 25y^2 - 30y - 9 = 0 \tag*{}[/math]

so that

[math](x - 6y - 2)^2 - 25y^2 - 30y - 9 = 0. \tag*{}[/math]

Finally, we complete the square in [math]y[/math]:

[math](x - 6y - 2)^2 - (5y + 3)^2 = 0. \tag*{}[/math]


As a result of our algebraic manipulations above, we can now readily factor the equation above via difference of two squares:

[math]((x - 6y - 2) + (5y + 3))((x - 6y - 2) - (5y + 3)) = 0, \t[/math]

We want to solve the Diophantine equation

[math]x^2 - 12xy - 4x + 11y^2 - 6y - 5 = 0. \tag*{}[/math]

First, we complete the square with the first two terms in [math]x[/math]:

[math](x - 6y)^2 - 4x - 25y^2 - 6y - 5 = 0. \tag*{}[/math]

Next, we complete the square in [math]x - 6y[/math]:

[math]((x - 6y)^2 - 4(x - 6y) + 4) - 25y^2 - 30y - 9 = 0 \tag*{}[/math]

so that

[math](x - 6y - 2)^2 - 25y^2 - 30y - 9 = 0. \tag*{}[/math]

Finally, we complete the square in [math]y[/math]:

[math](x - 6y - 2)^2 - (5y + 3)^2 = 0. \tag*{}[/math]


As a result of our algebraic manipulations above, we can now readily factor the equation above via difference of two squares:

[math]((x - 6y - 2) + (5y + 3))((x - 6y - 2) - (5y + 3)) = 0, \tag*{}[/math]

and therefore

[math](x - y + 1)(x - 11y - 5) = 0. \tag*{}[/math]

Hence, it follows that [math]x = y - 1[/math] or [math]x = 11y + 5[/math], and this yields the solutions in the integers

[math]\boxed{(x, y) = (t-1, t) \text{ or } (11t + 5, t), \text{ where } t \in \mathbb{Z}}. \tag*{}[/math]

Depending on whether we want non-negative integer or positive integer solutions, we can restrict [math]t[/math] accordingly.

Profile photo for Gopal Menon

How do I find all pairs of real numbers [math](x,y),[/math] which satisfy the following system of equations:
[math]x^6=y^4+18[/math] and [math]y^6=x^4+18?[/math]

Subtracting the second equation from the first equation, we get,

[math]x^6-y^6+x^4-y^4=0[/math]

[math]\Rightarrow (x^2-y^2)(x^4+x^2y^2+y^4)+(x^2-y^2)(x^2+y^2)=0.[/math]

[math]\Rightarrow (x^2-y^2)(x^4+x^2y^2+y^4+x^2+y^2)=0.[/math]

[math]\Rightarrow x^2-y^2=0[/math] or [math]x^4+x^2y^2+y^4+x^2+y^2=0.[/math]

If [math]x^4+x^2y^2+y^4+x^2+y^2=0[/math] then [math](x,y)=(0,0),[/math] which does not satisfy the given equations.

[math]\Rightarrow x^2-y^2=0.[/math]

[math]\Rightarrow x^2=y^2.[/math]

Substituting this in the first equation, we get, [math]x^6-x^4-18=0.[/math]

[math]\Rightarrow x^6-3x^4+2x^4-6x^2+6x^2-18=0.[/math]

[math]\Right[/math]

How do I find all pairs of real numbers [math](x,y),[/math] which satisfy the following system of equations:
[math]x^6=y^4+18[/math] and [math]y^6=x^4+18?[/math]

Subtracting the second equation from the first equation, we get,

[math]x^6-y^6+x^4-y^4=0[/math]

[math]\Rightarrow (x^2-y^2)(x^4+x^2y^2+y^4)+(x^2-y^2)(x^2+y^2)=0.[/math]

[math]\Rightarrow (x^2-y^2)(x^4+x^2y^2+y^4+x^2+y^2)=0.[/math]

[math]\Rightarrow x^2-y^2=0[/math] or [math]x^4+x^2y^2+y^4+x^2+y^2=0.[/math]

If [math]x^4+x^2y^2+y^4+x^2+y^2=0[/math] then [math](x,y)=(0,0),[/math] which does not satisfy the given equations.

[math]\Rightarrow x^2-y^2=0.[/math]

[math]\Rightarrow x^2=y^2.[/math]

Substituting this in the first equation, we get, [math]x^6-x^4-18=0.[/math]

[math]\Rightarrow x^6-3x^4+2x^4-6x^2+6x^2-18=0.[/math]

[math]\Rightarrow (x^2-3)(x^4+2x^2+6)=0.[/math]

[math]\Rightarrow x^2-3=0[/math] or [math]x^4+2x^2+6=0.[/math]

The second equation does not have any solution in the set of real numbers.

[math]\Rightarrow x=\pm\sqrt 3[/math] and consequently [math]y=\pm\sqrt 3.[/math]

[math]\Rightarrow[/math] The real valued solutions of the pair of equations are [math](x,y)=(\sqrt 3,\sqrt 3)[/math] or [math](\sqrt 3,-\sqrt 3)[/math] or [math](-\sqrt 3,\sqrt 3)[/math] or [math](-\sqrt 3,-\sqrt 3).[/math]

Profile photo for Awnon Bhowmik

*A2A

Trusting my instincts here and taking a blind shot. Not even sure if this is a good way to solve.

Considering the function [math]y=x^2[/math], or [math]x=y^2[/math]. These are parabolas with a [math]x[/math] and [math]y[/math] symmetry respectively.

So, if we are considering the equation [math]y^2=x^4[/math], or [math]x^2=y^4[/math], they represent a pair of parabolas. The given equations represents a pair of parabolas.

From the first equation:

[math]x^2+x=0 \\ \implies x(x+1)=0\\ \implies x=-1,0\tag*{}[/math]

[math]y^4+y^3+y^2+y=0\\ \implies y^3(y+1)+y(y+1)=0\\ \implies (y+1)(y^3+y)=0\\ \implies y(y+1)^2=0\\ \implies y=-1,-1,0\tag*{}[/math]

Making a combination:

[math](x,y)=\{(0,0),(0,-1),(-1,0),(-1,-1)[/math]

*A2A

Trusting my instincts here and taking a blind shot. Not even sure if this is a good way to solve.

Considering the function [math]y=x^2[/math], or [math]x=y^2[/math]. These are parabolas with a [math]x[/math] and [math]y[/math] symmetry respectively.

So, if we are considering the equation [math]y^2=x^4[/math], or [math]x^2=y^4[/math], they represent a pair of parabolas. The given equations represents a pair of parabolas.

From the first equation:

[math]x^2+x=0 \\ \implies x(x+1)=0\\ \implies x=-1,0\tag*{}[/math]

[math]y^4+y^3+y^2+y=0\\ \implies y^3(y+1)+y(y+1)=0\\ \implies (y+1)(y^3+y)=0\\ \implies y(y+1)^2=0\\ \implies y=-1,-1,0\tag*{}[/math]

Making a combination:

[math](x,y)=\{(0,0),(0,-1),(-1,0),(-1,-1)\}\tag*{}[/math]

This actually works because these pairs of values can actually satisfy both sides of the given equations. I admit its not the best way to solve an equation.


Fundamental Theorem of Algebra: An [math]n^{\text{th}}[/math] order polynomial has exactly [math]n[/math] roots.


I think I got away with this one. These should be the only solutions, according to the theorem.

Profile photo for Ragu Rajagopalan

[math]\\[/math]

[math]x^2y^2 − 2x^2y + 3x^2 + 4xy + 2y^2 = 4x + 4y + 1 \tag {E01}[/math]

[math]\\[/math]

[math](x^2 + 2) \cdot y^2 − (2x^2 - 4x + 4) \cdot y + (3x^2 - 4x - 1) = 0 [/math]

[math]\text{Above is a quadratic equation in 'y'. For } \: x,y \in \mathbb{Z} : \Delta \ge 0[/math]

[math]\implies (2x^2 - 4x + 4)^2 - 4(x^2+2) \cdot (3x^2 - 4x - 1) \ge 0 [/math]

[math]\implies x^4 - 4x^3 + 8x^2 - 8x + 4 -3x^4 + 4x^3 + x^2 - 6x^2 + 8x + 2 \ge 0 [/math]

[math]\implies 2x^4 - 3x^2 - 6 \le 0 \implies 16x^4 - 24x^2 - 48 \le 0 [/math]

[math]\implies \left(4x^2 - 3 \right)^2 \le 57 [/math]

[math]\implies \dfrac{3 - \sqrt{57}}{4} \le x^2 \le \dfrac{3 + \sqrt{57}}{4} [/math]

[math]\implies x \in \left[\: \dfrac{- \sqrt{3+\sqrt{57}}}{2} \:,\:[/math]

[math]\\[/math]

[math]x^2y^2 − 2x^2y + 3x^2 + 4xy + 2y^2 = 4x + 4y + 1 \tag {E01}[/math]

[math]\\[/math]

[math](x^2 + 2) \cdot y^2 − (2x^2 - 4x + 4) \cdot y + (3x^2 - 4x - 1) = 0 [/math]

[math]\text{Above is a quadratic equation in 'y'. For } \: x,y \in \mathbb{Z} : \Delta \ge 0[/math]

[math]\implies (2x^2 - 4x + 4)^2 - 4(x^2+2) \cdot (3x^2 - 4x - 1) \ge 0 [/math]

[math]\implies x^4 - 4x^3 + 8x^2 - 8x + 4 -3x^4 + 4x^3 + x^2 - 6x^2 + 8x + 2 \ge 0 [/math]

[math]\implies 2x^4 - 3x^2 - 6 \le 0 \implies 16x^4 - 24x^2 - 48 \le 0 [/math]

[math]\implies \left(4x^2 - 3 \right)^2 \le 57 [/math]

[math]\implies \dfrac{3 - \sqrt{57}}{4} \le x^2 \le \dfrac{3 + \sqrt{57}}{4} [/math]

[math]\implies x \in \left[\: \dfrac{- \sqrt{3+\sqrt{57}}}{2} \:,\: \dfrac{\sqrt{3+\sqrt{57}}}{2}\right] [/math]

[math]\implies x \in [\: -1.62 \:,\: 1.62 ] \implies x \in [-1, 1] \quad \text{Considering only } \mathbb{Z} \: \text{ values} \\[/math]

[math]\text{Case - 1 : When x = -1 : }[/math]

[math]\qquad (E01) : \: (-1)^2y^2 − 2(-1)^2y + 3(-1)^2 + 4(-1)y + 2y^2 = 4(-1) + 4y + 1 [/math]

[math]\qquad \implies 3y^2 − 10y + 6 = 0 [/math]

[math]\qquad \implies y = \dfrac{10 \pm \sqrt{100 - 4(3)(6)}}{6} = \dfrac{5 \pm \sqrt{7}}{3} \: \notin \mathbb{Z} \: \times \\[/math]

[math]\text{Case - 2 : When x = 0 : } [/math]

[math]\qquad (E01) : \: 2y^2 = 4y + 1 \implies 2y^2 - 4y - 1 = 0 [/math]

[math]\qquad \implies y = \dfrac{4 \pm \sqrt{16 + 4(1)(2)}}{4} = \dfrac{2 \pm \sqrt{6}}{2} \: \notin \mathbb{Z} \: \times \\[/math]

[math]\text{Case - 3 : When x = 1 : } [/math]

[math]\qquad (E01) : \: (1)^2y^2 − 2(1)^2y + 3(1)^2 + 4(1)y + 2y^2 = 4(1) + 4y + 1 [/math]

[math]\qquad \implies 3y^2 - 2y - 2 = 0 [/math]

[math]\qquad \implies y = \dfrac{2 \pm \sqrt{4 + 4(3)(2)}}{6} = \dfrac{1 \pm \sqrt{7}}{3} \: \notin \mathbb{Z} \: \times \\[/math]

[math]\qquad \therefore \: \boxed{\: \mathbf{\text{No integer solution exists.}}\:}[/math]

Profile photo for Brian Sittinger

We want to find all positive integer solutions to the Diophantine equation

[math]2^x + 17 = y^4. \tag*{}[/math]

In order to accomplish this, we first show that [math]x[/math] must be even. We show this by reducing the given equation modulo [math]17[/math]:

[math]2^x \equiv y^4 \bmod 17. \tag*{}[/math]

Then, raising both sides to the fourth power yields

[math]2^{4x} \equiv y^{16} \bmod 17. \tag*{}[/math]

The right side of the congruence either is [math]1 \bmod 17[/math] when [math]17 \nmid y[/math] (by Fermat’s Little Theorem), or [math]0 \bmod 17[/math] when [math]17 \mid y[/math]. The latter case cannot occur, because there is no solution to [math]2^n \equiv 0 \bmod 17[/math]. Hence [math]17 \nmid y[/math], and we have

[math]16^x \equiv 2^{4x} \[/math]

We want to find all positive integer solutions to the Diophantine equation

[math]2^x + 17 = y^4. \tag*{}[/math]

In order to accomplish this, we first show that [math]x[/math] must be even. We show this by reducing the given equation modulo [math]17[/math]:

[math]2^x \equiv y^4 \bmod 17. \tag*{}[/math]

Then, raising both sides to the fourth power yields

[math]2^{4x} \equiv y^{16} \bmod 17. \tag*{}[/math]

The right side of the congruence either is [math]1 \bmod 17[/math] when [math]17 \nmid y[/math] (by Fermat’s Little Theorem), or [math]0 \bmod 17[/math] when [math]17 \mid y[/math]. The latter case cannot occur, because there is no solution to [math]2^n \equiv 0 \bmod 17[/math]. Hence [math]17 \nmid y[/math], and we have

[math]16^x \equiv 2^{4x} \equiv 1 \bmod 17. \tag*{}[/math]

Since [math]16^x \equiv (-1)^x \bmod 17[/math], it is easily checked that [math]x[/math] must be even.


Now that we know [math]x[/math] is even, we can rearrange the given Diophantine equation and factor via difference of squares, giving us

[math]y^2 - 2^x = (y^2 + 2^{x/2})(y^2 - 2^{x/2}) = 17. \tag*{}[/math]

Since [math]17[/math] is prime and [math]y^2 + 2^{x/2} > y^2 - 2^{x/2}[/math], we must have

[math]y^2 + 2^{x/2} = 17 \text{ and } y^2 - 2^{x/2} = 1. \tag*{}[/math]

Adding these equations together, we obtain [math]2y^2 = 18[/math]. Since [math]y > 0[/math], this yields [math]y = 3[/math]. Finally, substituting this into either equation above, we see that [math]x = 6[/math].

Hence, the only solution in positive integers to the given Diophantine equation is

[math]\boxed{(x, y) = (6, 3)}. \tag*{}[/math]

Profile photo for Quora User

[math]\boxed{[x,y]=[[1,1], [1,2], [2,1], [2,5], [3,2], [3,5]]}[/math] is the set of solutions.

We need [math]xy \mid (x^2+1)(y+1) [/math]

[math]\implies x^2+y+1=kxy[/math], [math]k \ge 1[/math] (ignoring [math]x^2y[/math] because [math]xy \mid x^2y[/math])

(i) [math]x=y \implies x^2+x+1=kx^2[/math]

[math]\implies k=1+\frac{x+1}{x^2}[/math], which is an integer [math]k=3[/math] only for [math]x=1[/math]. So, [math]x=y=1[/math] is a verifiable solution (a rather trivial one).

(ii) [math]x>y[/math]; Here, in [math]x(ky-x)=y+1[/math], the [math]RHS>0[/math], so [math]ky-x \ge 1[/math]; but because [math]x>y[/math], [math]x=y+1[/math]. If [math]x>y+1[/math], the [math]RHS<LHS[/math].

This means that [math]ky-y-1=1 \implies k=1+\frac{2}{y}[/math], which has integer values for [math]y=[1,2][/math] as [math]k=[3,2][/math]. Correspondingly, [math]x=[2,3][/math], so [math][x,y]=[2,1][/math] and [math][3,2][/math] are solutions.

[math]\boxed{[x,y]=[[1,1], [1,2], [2,1], [2,5], [3,2], [3,5]]}[/math] is the set of solutions.

We need [math]xy \mid (x^2+1)(y+1) [/math]

[math]\implies x^2+y+1=kxy[/math], [math]k \ge 1[/math] (ignoring [math]x^2y[/math] because [math]xy \mid x^2y[/math])

(i) [math]x=y \implies x^2+x+1=kx^2[/math]

[math]\implies k=1+\frac{x+1}{x^2}[/math], which is an integer [math]k=3[/math] only for [math]x=1[/math]. So, [math]x=y=1[/math] is a verifiable solution (a rather trivial one).

(ii) [math]x>y[/math]; Here, in [math]x(ky-x)=y+1[/math], the [math]RHS>0[/math], so [math]ky-x \ge 1[/math]; but because [math]x>y[/math], [math]x=y+1[/math]. If [math]x>y+1[/math], the [math]RHS<LHS[/math].

This means that [math]ky-y-1=1 \implies k=1+\frac{2}{y}[/math], which has integer values for [math]y=[1,2][/math] as [math]k=[3,2][/math]. Correspondingly, [math]x=[2,3][/math], so [math][x,y]=[2,1][/math] and [math][3,2][/math] are solutions.

(iii) [math]x<y[/math]; [math](kx-1)y=x^2+1 \implies kx-1 \le x[/math] because [math]xy \ge x^2+1[/math] for [math]y \ge 2[/math] (with the equality applicable only when [math][x,y]=[1,2][/math])

[math]\implies k \le 1+\frac{1}{x}[/math] (1), which means that [math][k,x]=[2,1][/math] is a set of parameters worth checking for. Although the above equality discussion spells the solution out, we could check with a substitution and see that [math]y+2=2y \implies y=2[/math] and, so, [math][x,y]=[1,2][/math] is another solution.

The last solutions relate to [math]k=1[/math] based on (1), which means that:

[math]y=\frac{x^2+1}{x-1}=x+1+\frac{2}{x-1}[/math]

[math]x=[2,3][/math] work to generate integer [math]y=[5,5][/math], so [math][x,y]=[2,5][/math] and [math][3,5][/math] are the last solutions.

Profile photo for Ragu Rajagopalan

[math]\\[/math]

[math]xy \cdot (x^2y^2 − 12xy − 12x − 12y + 2) = (2x + 2y)^2 \tag {E01}[/math]

[math]\implies xy \cdot ( x^2y^2 - 12xy + 2) + 9x^2y^2 = (2x + 2y)^2 + 6xy \cdot (2x+2y)+ 9x^2y^2[/math]

[math]\implies xy \cdot \left[ x^2y^2 - 3xy + 2 \right] = (2x + 2y + 3xy)^2 [/math]

[math]\implies xy \cdot (xy - 1) \cdot (xy - 2) = (2x + 2y + 3xy)^2 \tag {E02}[/math]

[math]\\[/math]

[math]\text{Trivial Solutions : LHS = 0 When : }[/math]

[math]\qquad \text{Case T01 : When x = 0 : } [/math]

[math]\qquad \qquad (E02) : \: (2x + 2y + 3xy) = 0 [/math]

[math]\qquad \qquad \implies y = 0 \implies \boxed{\: (x,y) = (0,0) \:} \\[/math]

[math]\qquad \text{Case T02 : When y = 0 : } [/math]

[math]\qquad \qquad (E02) : \: (2x + 2y + 3xy) = 0 [/math]

[math]\qquad \qquad \imp[/math]

[math]\\[/math]

[math]xy \cdot (x^2y^2 − 12xy − 12x − 12y + 2) = (2x + 2y)^2 \tag {E01}[/math]

[math]\implies xy \cdot ( x^2y^2 - 12xy + 2) + 9x^2y^2 = (2x + 2y)^2 + 6xy \cdot (2x+2y)+ 9x^2y^2[/math]

[math]\implies xy \cdot \left[ x^2y^2 - 3xy + 2 \right] = (2x + 2y + 3xy)^2 [/math]

[math]\implies xy \cdot (xy - 1) \cdot (xy - 2) = (2x + 2y + 3xy)^2 \tag {E02}[/math]

[math]\\[/math]

[math]\text{Trivial Solutions : LHS = 0 When : }[/math]

[math]\qquad \text{Case T01 : When x = 0 : } [/math]

[math]\qquad \qquad (E02) : \: (2x + 2y + 3xy) = 0 [/math]

[math]\qquad \qquad \implies y = 0 \implies \boxed{\: (x,y) = (0,0) \:} \\[/math]

[math]\qquad \text{Case T02 : When y = 0 : } [/math]

[math]\qquad \qquad (E02) : \: (2x + 2y + 3xy) = 0 [/math]

[math]\qquad \qquad \implies x = 0 \implies \boxed{\: (x,y) = (0,0) \:} \\[/math]

[math]\qquad \text{Case T03 : When xy = 1 : } [/math]

[math]\qquad \qquad (E02) : \: (2x + 2y + 3xy) = 0 [/math]

[math]\qquad \qquad \implies (x+y) = \frac{-3}{2} \:; \quad xy = 1 [/math]

[math]\qquad \qquad x,y \text{ are roots of : } \: t^2 + \frac{3t}{2} + 1 = 0[/math]

[math]\qquad \qquad \implies x,y = t = \dfrac{\frac{-3}{2} \pm \sqrt{\frac{9}{4} - 4}}{2} \: \notin \mathbb{Z} \: \times \\[/math]

[math]\qquad \text{Case T04 : When xy = 2 : } [/math]

[math]\qquad \qquad (E02) : \: (2x + 2y + 3xy) = 0 [/math]

[math]\qquad \qquad \implies (x+y) = -3 \:; \quad xy = 2 [/math]

[math]\qquad \qquad x,y \text{ are roots of : } \: t^2 + 3t + 2 = 0[/math]

[math]\qquad \qquad \implies (t+1) \cdot (t+2) = 0 [/math]

[math]\qquad \qquad \boxed{\: x,y = t = \left\{\: (-1 \:,\: -2 ) \:,\: (-2, -1) \: \right\} \:}\\[/math]

[math]\text{For other solutions, let : (x+y) = axy } [/math]

[math]\qquad (E02) : \: xy \cdot (xy - 1) \cdot (xy - 2) = (axy + 3xy)^2 [/math]

[math]\qquad \implies (xy - 1) \cdot (xy - 2) = xy \cdot (a+3)^2 \tag {E03}[/math]

[math]\qquad \text{Since x and y are integers AND } [/math]

[math]\qquad \qquad \text{xy and (xy-1) are relatively co-prime } [/math]

[math]\qquad \qquad \text{(xy-1) and (xy-2) are relatively co-prime } [/math]

[math]\qquad \qquad \text{RHS has a square term as one of the factors } [/math]

[math]\qquad \text{No integer solution is possible.} [/math]

Profile photo for Sohel Zibara

[math]\displaystyle{\color{darkblue}{\textbf{The given equation can be rewritten as :}\\\color{darkred}{\left(y\,\,–\,x\right)\left(x^2\,+\,y^2\,+\,xy\,+\,2\right)\,=\,3\left(x^2\,+\,3\right)}\\\textbf{which means that }\,\,\color{darkred}{y\,\,–\,x\,>\,0}\,\,\textbf{ or equivalently }\,\,\color{darkred}{y\,>\,x}\,.}}[/math]

[math]\displaystyle{\color{darkblue}{\textbf{Set therefore }\,\,\color{darkred}{y\,=\,x\,+\,u[/math]

[math]\displaystyle{\color{darkblue}{\textbf{The given equation can be rewritten as :}\\\color{darkred}{\left(y\,\,–\,x\right)\left(x^2\,+\,y^2\,+\,xy\,+\,2\right)\,=\,3\left(x^2\,+\,3\right)}\\\textbf{which means that }\,\,\color{darkred}{y\,\,–\,x\,>\,0}\,\,\textbf{ or equivalently }\,\,\color{darkred}{y\,>\,x}\,.}}[/math]

[math]\displaystyle{\color{darkblue}{\textbf{Set therefore }\,\,\color{darkred}{y\,=\,x\,+\,u\,\,\,,\,\,\,u\,\in\,\N^*}\,.\,\textbf{ Substituting in the original equation}\\\textbf{yields :}\\\color{darkred}{3\left(u\,\,–\,1\right)x^2\,+\,\left(3u^2\right)x\,+\,u^3\,+\,2u\,\,–\,9\,=\,0}\,.}}[/math]

[math]\displaystyle{\color{darkblue}{\textbf{If }\,\,\color{darkred}{u\,=\,1}\,\,\textbf{ then }\,\,\boxed{\mathbf{\color{darkred}{\left(x\,,\,y\right)\,=\,\left(2\,,\,3\right)}}}\,.}}[/math]

[math]\displaystyle{\color{darkblue}{\textbf{If }\,\,\color{darkred}{u\,\ne\,1}\,\,\textbf{ we are left with a quadratic equation having the discriminant}\\\color{darkred}{\Delta\,=\,\,–3\left(u^4\,\,–\,4u^3\,+\,8u^2\,\,–\,44u\,+\,36\right)}\,.\,\textbf{ Since }\,\,\color{darkred}{u\,\in\,\N^*}\,\,\textbf{ and since none of}\\\color{darkred}{\{1\,,\,2\,,\,3\,,\,4\,,\,6\,,\,9\,,\,12\,,\,18\,,\,36\}}\,\,\textbf{ is a root of }\,\,\color{darkred}{u^4\,\,–\,4u^3\,+\,8u^2\,\,–\,44u\,+\,36}\,,\,\textbf{ it}\\\textbf{follows that }\,\,\color{darkred}{u^4\,\,–\,4u^3\,+\,8u^2\,\,–\,44u\,+\,36\,\ne\,0}\,\,\textbf{ in...

Profile photo for Brian Sittinger

Letting [math]x = y + t[/math] for some integer [math]t[/math], we obtain

[math](y+t)^3 + 3(y+t)^2 + 2(y+t) + 9 = y^3 + 2y, \tag*{}[/math]

and thus

[math](3t + 3)y^2 + (3t^2 + 6t)y + (t^3 + 3t^2 + 2t + 9) = 0. \tag*{}[/math]

If [math]t = -1[/math], then [math]y = 3[/math]; this gives us the solution [math](x, y) = (2, 3)[/math].

Otherwise assuming [math]t \neq -1[/math] gives us a quadratic equation in [math]y[/math], and this can only possibly have integer solutions if its discriminant is nonnegative. Computing the discriminant, we obtain

[math]\begin{align*} \Delta &= (3t^2 + 6t)^2 - 4(3t + 3)(t^3 + 3t^2 + 2t + 9)\\ &= -3 (t^4 + 4t^3 + 8t^2 + 44t + 36). \end{align*} \tag*{}[/math]

Clearly, [math]\Delta < 0[/math] when [math]t \geq 0[/math]. Moreover, [math][/math]

Letting [math]x = y + t[/math] for some integer [math]t[/math], we obtain

[math](y+t)^3 + 3(y+t)^2 + 2(y+t) + 9 = y^3 + 2y, \tag*{}[/math]

and thus

[math](3t + 3)y^2 + (3t^2 + 6t)y + (t^3 + 3t^2 + 2t + 9) = 0. \tag*{}[/math]

If [math]t = -1[/math], then [math]y = 3[/math]; this gives us the solution [math](x, y) = (2, 3)[/math].

Otherwise assuming [math]t \neq -1[/math] gives us a quadratic equation in [math]y[/math], and this can only possibly have integer solutions if its discriminant is nonnegative. Computing the discriminant, we obtain

[math]\begin{align*} \Delta &= (3t^2 + 6t)^2 - 4(3t + 3)(t^3 + 3t^2 + 2t + 9)\\ &= -3 (t^4 + 4t^3 + 8t^2 + 44t + 36). \end{align*} \tag*{}[/math]

Clearly, [math]\Delta < 0[/math] when [math]t \geq 0[/math]. Moreover, [math]\Delta < 0[/math] when [math]t \leq -5[/math], because

[math]\begin{align*} \Delta &= t^2 (t + 2)^2 + (2t + 11)^2 - 85\\ &\geq (-5)^2 \cdot (-5 + 2)^2 + (2 \cdot (-5) + 11)^2 - 85\\ &> 0. \end{align*} \tag*{}[/math]

(The penultimate line is best seen from minimizing each square quantity separately).

Then, only values of [math]t[/math] that remain to be checked are

[math]t \in \{-4, -3, -2\}. \tag*{}[/math]

(In each of these cases, [math]\Delta \geq 0[/math]). However, we also need [math]\Delta[/math] to be a perfect square to ensure that [math]y[/math] is at least rational. This only occurs when [math]t = -4[/math], and this yields the integer solution [math](x, y) = (-3, 1)[/math]. However, we ignore this solution, because we only want positive integer solutions.


Therefore, we conclude that the only positive integer solution to the given Diophantine equation is

[math]\boxed{(x, y) = (2,3)}. \tag*{}[/math]

Profile photo for Vijay Mankar

Taking [math]b=ka,[/math]

[math]\dfrac{(a^3+b^3)}{(a^2+b^2)}[/math]

[math]=\dfrac{(a^3+(ka)^3)}{(a^2+(ka)^2)}[/math]

[math]=\dfrac{a^3(1+k^3}{a^2(1+k^2)}[/math]

[math]=\dfrac{a(1+k^3)}{(1+k^2)}[/math]

Taking [math]a=m(1+k^2), a^2+b^2\mid a^3+b^3[/math]

So, apart from trivial solution for [math]k=0, 1[/math]

The solutions are

[math]\boxed{(a, b)=(m(1+k^2), ka)}\tag *{}[/math]

Example:

[math](m, k, a, b)=(1,2, 5, 10), (2,2,10, 20),\cdots[/math]

Profile photo for Richard P

Working (mod 17) looks like a good idea. Then y^4 is a quartic residue (mod 17), hence y^2 is a quadratic residue (mod 17), hence y^2 is in ±{1, 2, 4, 8} and y^4 is in ±{1, 4} (mod 17).

Also 2^x is a power of 2 (mod 17) and hence the LHS is in ±{1, 2, 4, 8} (mod 17).

So the LHS is in ±{1, 4} (mod 17) to match the RHS, and hence 2^x is a power of 4, hence x is even.

So write x = 2k. Then 17 = y^4 - 2^(2k) = (y^2 – 2^k)(y^2 + 2^k) is a prime. Hence the smaller factor (y^2 - 2^k) = 1, and the larger factor (y^2 + 2^k) = 17.

So y^2 = 9, 2^k = 8, and (x, y) = (2k, y) = (6, 3).

Check: 64 + 17 = 81.

Profile photo for Brian Sittinger

Essentially, we want to find all integers [math]x[/math] such that

[math]x^{12} + x^6 + 1 \equiv 0 \bmod 19. \tag*{}[/math]

By using the difference of cubes formula, we start by completing the square with the middle term:

[math]\displaystyle \frac{x^{18} - 1}{x^6 - 1} \equiv 0 \bmod 19. \tag*{}[/math]

Since [math]19[/math] is prime, Fermat’s Little Theorem, any [math]x \in \{1, 2, 3, …, 18\} \bmod 19[/math] makes the numerator equal to [math]0 \bmod 19[/math]. Hence, we only need to exclude the solutions to [math]x^6 - 1 \equiv 0 \bmod 19[/math]. Factoring yields

[math]\begin{align*} x^6 - 1 &\equiv (x^3 - 1)(x^3 + 1)\\ &\equiv (x - 1)(x^2 + x + 1) \cdot (x + 1)(x^2 - x + 1)\\ &\equiv (x - 1)([/math]

Essentially, we want to find all integers [math]x[/math] such that

[math]x^{12} + x^6 + 1 \equiv 0 \bmod 19. \tag*{}[/math]

By using the difference of cubes formula, we start by completing the square with the middle term:

[math]\displaystyle \frac{x^{18} - 1}{x^6 - 1} \equiv 0 \bmod 19. \tag*{}[/math]

Since [math]19[/math] is prime, Fermat’s Little Theorem, any [math]x \in \{1, 2, 3, …, 18\} \bmod 19[/math] makes the numerator equal to [math]0 \bmod 19[/math]. Hence, we only need to exclude the solutions to [math]x^6 - 1 \equiv 0 \bmod 19[/math]. Factoring yields

[math]\begin{align*} x^6 - 1 &\equiv (x^3 - 1)(x^3 + 1)\\ &\equiv (x - 1)(x^2 + x + 1) \cdot (x + 1)(x^2 - x + 1)\\ &\equiv (x - 1)(x^2 - 18x + 77) \cdot (x + 1)(x^2 - 20x + 96)\\ &\equiv (x - 1)(x - 7)(x - 11) \cdot (x + 1)(x - 8)(x - 12) \bmod 19. \end{align*} \tag*{}[/math]

Solving this (for positive residues) yields [math]x \equiv 1, 7, 11, 18, 8, 12 \bmod 19[/math].


Hence, we conclude that the integers [math]x[/math] satisfying the given Diophantine equation are given by

[math]\boxed{ x \equiv 2, 3, 4, 5, 6, 9, 10, 13, 14, 15, 16, 17 \bmod 19}. \tag*{}[/math]

Profile photo for Ragu Rajagopalan

[math]\\[/math]

[math]\text{Let } \: k = \dfrac{x^2y + x + y}{xy^2 + y + 11} \tag {E01} \\[/math]

[math]\text{Trivial Case - 1 : When x = 0 : } [/math]

[math]\qquad k = \dfrac{y}{y + 11} \implies ky + 11k = y \implies y = \dfrac{11k}{1 - k} [/math]

[math]\qquad \text{Possible integer solutions : } k = \left\{\: -10 \:,\: 0\:,\: 2 \:,\: 12 \:\right\} [/math]

[math]\qquad \implies \boxed{\: (x,y) = \left\{\: (\:0 \:,\: -10\:) \:,\: (\:0 \:,\: 0\:) \:,\: (\:0 \:,\: -22\:) \:,\: (\:0 \:,\: -12\:) \:\right\}\:} \\[/math]

[math]\text{Trivial Case - 2 : When y = 0 : } [/math]

[math]\qquad k = \dfrac{x}{11} \implies x = 11n[/math]

[math]\qquad \implies \boxed{\: (x,y) = (\:11n \:,\: 0\:) \:\forall \: n \: \in \: \mat[/math]

[math]\\[/math]

[math]\text{Let } \: k = \dfrac{x^2y + x + y}{xy^2 + y + 11} \tag {E01} \\[/math]

[math]\text{Trivial Case - 1 : When x = 0 : } [/math]

[math]\qquad k = \dfrac{y}{y + 11} \implies ky + 11k = y \implies y = \dfrac{11k}{1 - k} [/math]

[math]\qquad \text{Possible integer solutions : } k = \left\{\: -10 \:,\: 0\:,\: 2 \:,\: 12 \:\right\} [/math]

[math]\qquad \implies \boxed{\: (x,y) = \left\{\: (\:0 \:,\: -10\:) \:,\: (\:0 \:,\: 0\:) \:,\: (\:0 \:,\: -22\:) \:,\: (\:0 \:,\: -12\:) \:\right\}\:} \\[/math]

[math]\text{Trivial Case - 2 : When y = 0 : } [/math]

[math]\qquad k = \dfrac{x}{11} \implies x = 11n[/math]

[math]\qquad \implies \boxed{\: (x,y) = (\:11n \:,\: 0\:) \:\forall \: n \: \in \: \mathbb{Z} \:} \\[/math]

[math]\text{Trivial Case - 3 : When x = y : } [/math]

[math]\qquad k = \dfrac{x^3 + 2x}{x^3 + x + 11} [/math]

[math]\qquad \implies (k-1) = \dfrac{x - 11}{x^3 + x + 11} [/math]

[math]\qquad \implies \boxed{\: (x,y) = (\:11 \:,\: 11\:) \:} \\[/math]

I haven’t worked out the remaining part of generic solutions.

Profile photo for Leo Harten

The solution for a non-linear problem of this sort is to contour plot the LHS-RHS and seek a 0 contour. You can then use a 2–d form of Newton-Raphson to hone in on an approximate value for a root. You could also seek a minimization of (LHS-RHS)^2 to seek the 0, say with Levenberg-Marquardt.

Profile photo for Sohel Zibara

[math]\displaystyle{\textbf{For }\,x\,,\,y\,\in\,\N^{*}\,,\,\textbf{ we have :}\\\sqrt[3]{7\left(x\,\,–\,y\right)^2\,+\,xy}\,=\,|x\,\,–\,y|\,+\,1\\\textbf{Notice first that if }\,x\,=\,y\,\textbf{ then }\,x\,=\,y\,=\,1.\\\textbf{Furthermore since the equation is symmetric in }\,x\,\textbf{ and }\,y\,,\,\textbf{ we can assume}\\\textbf{WLOG that }\,x\,>\,y\,\textbf{ yielding:}\\\sqrt[3]{7\left(x\,\,–\,y\[/math]

[math]\displaystyle{\textbf{For }\,x\,,\,y\,\in\,\N^{*}\,,\,\textbf{ we have :}\\\sqrt[3]{7\left(x\,\,–\,y\right)^2\,+\,xy}\,=\,|x\,\,–\,y|\,+\,1\\\textbf{Notice first that if }\,x\,=\,y\,\textbf{ then }\,x\,=\,y\,=\,1.\\\textbf{Furthermore since the equation is symmetric in }\,x\,\textbf{ and }\,y\,,\,\textbf{ we can assume}\\\textbf{WLOG that }\,x\,>\,y\,\textbf{ yielding:}\\\sqrt[3]{7\left(x\,\,–\,y\right)^2\,+\,xy}\,=\,\left(x\,\,–\,y\right)\,+\,1\\\textbf{Letting }\,x\,\,–\,y\,=\,k\,\,,\,\,k\,>\,0\,\textbf{ yields:}\\\sqrt[3]{7k^2\,+\,y\left(y\,+\,k\right)}\,=\,k\,+\,1\\\textbf{Cubing yields :}\\7k^2\,+\,y\left(y\,+\,k\right)\,=\,\left(k\,+\,1\right)^3\\\textbf{Rewriting yields a 2nd degree equation in }\,y\,\textbf{ namely}\\y^2\,+ky\,\,–\left(k^3\,\,–\,4k^2\,+\,3k\,+\,1\right)\,=\,0\\\textbf{Keeping in mind that }\,y\,\ge\,1\,\textbf{ yields :}\\y\,=\,\frac{1}{2}\left(–k\,+\,\sqrt{\left(k\,\,–\,2\right)^2\left(4k\,+\,1\right)}\right)}[/math]

[math]\displaystyle{y\,\textbf{ being a positive integer implies that }\,4k\,+\,1\,\textbf{ must be a perfect square}\\\textbf{which occurs whenever }\,k\,=\,n\lef...

Profile photo for Fernando Cagarrinho

In positive integers clearly y>x.

Setting y=x+u we have,

3x^2+ 2x+ 9 = 3ux^2+ (3u^2+2)x+ u^3+2u

Term by term the quadratic polynomial in the RHS is bigger for u>1

and the equality doesn’t hold.

With u=1

2x+9=5x+3<=>x=2

The solution is (x,y)=(2,3)

Profile photo for Ragu Rajagopalan

[math]\\[/math]

[math]\text{Given : } \: x,y \in \mathbb{Z^+} [/math]

[math]x^3 + y^3 = x^2 + 42xy + y^2 \tag {E01}[/math]

[math]\text{Trivial Solution : When x = y : } [/math]

[math](E01) :\: x^3 + x^3 = x^2 + 42x^2 + x^2 \implies 2x^3 = 44x^2 [/math]

[math]\implies \boxed{\: x = y = 22 \:} \quad \left[\: \because \: x ,y > 0 \: \right] [/math]


[math](E01) : \: (x+y) \cdot (x^2 - xy + y^2) = (x^2 - xy + y^2) + 43xy [/math]

[math]\implies (x+y-1) \cdot (x^2 - xy + y^2) = 43xy \tag {E02}[/math]

[math]\\[/math]

[math]\text{Possible Solutions : } [/math]

[math]\text{Case - 1 : When }\: (x+y-1) = 43; \quad (x^2-xy+y^2) = xy \: : [/math]

[math]\qquad \implies x=y; \quad x+y = 44 \implies \boxed{\: x = y = 22\:} \\[/math]

[math]\text{Case - 2 : When }\: (x+y-1) = x; \q[/math]

[math]\\[/math]

[math]\text{Given : } \: x,y \in \mathbb{Z^+} [/math]

[math]x^3 + y^3 = x^2 + 42xy + y^2 \tag {E01}[/math]

[math]\text{Trivial Solution : When x = y : } [/math]

[math](E01) :\: x^3 + x^3 = x^2 + 42x^2 + x^2 \implies 2x^3 = 44x^2 [/math]

[math]\implies \boxed{\: x = y = 22 \:} \quad \left[\: \because \: x ,y > 0 \: \right] [/math]


[math](E01) : \: (x+y) \cdot (x^2 - xy + y^2) = (x^2 - xy + y^2) + 43xy [/math]

[math]\implies (x+y-1) \cdot (x^2 - xy + y^2) = 43xy \tag {E02}[/math]

[math]\\[/math]

[math]\text{Possible Solutions : } [/math]

[math]\text{Case - 1 : When }\: (x+y-1) = 43; \quad (x^2-xy+y^2) = xy \: : [/math]

[math]\qquad \implies x=y; \quad x+y = 44 \implies \boxed{\: x = y = 22\:} \\[/math]

[math]\text{Case - 2 : When }\: (x+y-1) = x; \quad (x^2-xy+y^2) = 43y \: : [/math]

[math]\qquad \implies y=1; \implies x^2 - x + 1 = 43 [/math]

[math]\qquad \implies x^2 - x - 42 = 0 \implies (x-7)(x+6) = 0 [/math]

[math]\qquad \implies x = 7 \quad \left[\text{ ignoring negative value of 'x' } \right] [/math]

[math]\qquad \implies \boxed{\: (x,y) = (7,1) \: } \\[/math]

[math]\text{Case - 3 : When }\: (x+y-1) = y; \quad (x^2-xy+y^2) = 43x \: : [/math]

[math]\qquad \implies x=1; \implies y^2 - y + 1 = 43 [/math]

[math]\qquad \implies y = 7 \quad \left[\text{ ignoring negative value of 'y' } \right] [/math]

[math]\qquad \implies \boxed{\: (x,y) = (1,7) \: } \\[/math]

[math]\text{Case - 4 : When }\: (x+y-1) = 1; \quad (x^2-xy+y^2) = 43xy \implies y=(2-x) [/math]

[math]\qquad \implies x^2 + 44xy + y^2 = 0 [/math]

[math]\qquad \implies 21x^2 - 42x - 2 = 0 \implies x\notin \mathbb{Z}[/math]


One can try with other possible cases such as : (x+y-1) = 43k and so on. But, there is no other positive integer solution.

Graph from Desmos | Let's learn together. shows that integral values of x and y are bound in the range (0,23). Only integer solutions are : (x,y) = { (1,7), (7,1), (22, 22) }

Profile photo for Quora User

[math]\boxed{[x,y]=[5,2]}[/math] is the only solution in positive integers.

We're solving [math]x^2+x-y-y^2-y^3-y^4=0[/math], which, if treated as a quadratic in [math]x[/math], has [math]4y^4+4y^3+4y^2+4y+1=(2y^2+y)^2+3y^2+4y+1[/math] as the discriminant.

[math](2y^2+y+1)^2=4y^4+4y^3+5y^2+2y+1[/math], so if [math](2y^2+y+1)^2-(2y^2+y)^2=4y^2+2y+1>3y^2+4y+1[/math] or [math]y^2-2y>0 \implies y<0[/math] (impossible) or [math]y>2[/math], the discriminant is squeezed between consecutive integer squares, viz. [math](2y^2+y)^2[/math] and [math](2y^2+y+1)^2[/math].

So, we only need to check [math]y=[1,2][/math]

[math]y=1 \implies x^2+x-4=0[/math], which has no integer solutions in [math]x[/math]

[math]y=2 \implies x^2+x-30=0[/math] or [math](x+6)(x-5)=0 \implies x=5[/math]

Profile photo for Quora User

[math]\boxed{[x,y]=[[0,0],[0,1],[1,0],[1,2],[2,1],[2,2]]}[/math] is the unified solution set

[math][x,y]=[0,0][/math] is a trivial solution

Otherwise, RHS of [math]x+y=x^2-xy+y^2[/math] is greater than [math]0[/math],

so, [math]x+y>0[/math]

[math]\implies (x+y)^2 -(x+y)=3xy[/math]

[math][x,y]=[[1,0],[0,1]][/math] is also a trivial solution of the above equation

for [math]x,y \neq 0[/math],

rewrite as [math](x+y)(x+y-1)=3xy[/math]

[math]\implies (\frac{1}{x}+\frac{1}{y})(x+y-1)=3[/math]

as [math]x+y>0[/math] and [math]x+y-1>0[/math], [math]xy>0 \implies x>0[/math] and [math]y>0[/math]

RHS is prime, so, splitting all possible cases into two subsets:

(i)[math]x+y-1=a[/math] and [math]\frac{1}{x}+\frac{1}{y}=\frac{3}{a}[/math],

where [math]a>0[/math] and [math]a=1,2..[/math]

[math]\implies xy=\frac{a(a+1)}{3}[/math]

[math](x-y)^2=(x+y)^2-4xy=(a+1)^2-\frac{4a([/math]

[math]\boxed{[x,y]=[[0,0],[0,1],[1,0],[1,2],[2,1],[2,2]]}[/math] is the unified solution set

[math][x,y]=[0,0][/math] is a trivial solution

Otherwise, RHS of [math]x+y=x^2-xy+y^2[/math] is greater than [math]0[/math],

so, [math]x+y>0[/math]

[math]\implies (x+y)^2 -(x+y)=3xy[/math]

[math][x,y]=[[1,0],[0,1]][/math] is also a trivial solution of the above equation

for [math]x,y \neq 0[/math],

rewrite as [math](x+y)(x+y-1)=3xy[/math]

[math]\implies (\frac{1}{x}+\frac{1}{y})(x+y-1)=3[/math]

as [math]x+y>0[/math] and [math]x+y-1>0[/math], [math]xy>0 \implies x>0[/math] and [math]y>0[/math]

RHS is prime, so, splitting all possible cases into two subsets:

(i)[math]x+y-1=a[/math] and [math]\frac{1}{x}+\frac{1}{y}=\frac{3}{a}[/math],

where [math]a>0[/math] and [math]a=1,2..[/math]

[math]\implies xy=\frac{a(a+1)}{3}[/math]

[math](x-y)^2=(x+y)^2-4xy=(a+1)^2-\frac{4a(a+1)}{3}[/math]

[math]=\frac{(a+1)(3-a)}{3}[/math],which is an integer [math]0[/math] when [math]a=3[/math] and a positive integer [math]1[/math] only when [math]a=2[/math]

[math]x-y=0[/math] and [math]x+y=4[/math] when [math]a=3[/math]

[math]\implies [x,y]=[2,2][/math] is a solution

[math]x-y=\pm1[/math] and [math]x+y=3[/math] when [math]a=2 [/math]

[math]\implies [x,y]=[[2,1],[1,2]][/math] is also a solution

(ii)[math]x+y-1=3a[/math] and [math]\frac{1}{x}+\frac{1}{y}=\frac{1}{a}[/math]

where [math]a>0[/math] and [math]a=1,2...[/math]

[math]\implies xy=a(3a+1)[/math]

[math](x-y)^2=(x+y)^2-4xy=(3a+1)^2-4a(3a+1)[/math]

[math]=(3a+1)(1-a)[/math], which is [math]0[/math] when [math]a=1[/math] and [math]<0[/math] for [math]a>1[/math]

When [math]a=1[/math], [math]x-y=0[/math] and [math]x+y=4 [/math]

[math]\implies [x,y]=[2,2][/math] is a solution

No solution exists for [math]a>1[/math]

About · Careers · Privacy · Terms · Contact · Languages · Your Ad Choices · Press ·
© Quora, Inc. 2025